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The DNA base pair stack has been shown to mediate charge
transport over significant distances1 using a variety of experiments.2

The mechanisms underlying DNA charge transport chemistry
remain poorly understood.3 DNA charge transport provides an
efficient route to carry out both oxidative and reductive reactions
at a distance.2,4,5 Recently, we reported that DNA charge transport
can lead to oxidation of thiols incorporated into a DNA duplex
with concomitant disulfide bond formation.6 Here, we demonstrate
the electrochemical reduction of disulfides incorporated within the
sugar-phosphate backbone reversibly at a self-assembled DNA
monolayer.

Electrochemistry at DNA-modified gold surfaces has been
utilized for new methods of detecting mutations and in probing
DNA-protein interactions.7 We have, moreover, recently developed
DNA-modified highly oriented pyrolytic graphite (HOPG) as an
alternative to gold.7 DNA monolayers on both gold and HOPG have
been extensively characterized via electrochemistry, AFM, and
radioactive labeling.8,9 For both materials, dense monolayers with
surface densities of∼40 pmol/cm2 are assembled in the presence
of Mg2+. Gold has proven to be a particularly attractive platform
for mismatch detection.7 However, graphite may be better suited
for monitoring protein/DNA interactions10 and certainly for explor-
ing the electrochemistry of disulfide bond formation.11

The DNA-mediated electrochemical reduction of a disulfide
incorporated within the DNA sugar-phosphate backbone is sche-
matically illustrated in Figure 1. Thiol groups were incorporated
at the 3′ and 5′ ends of two contiguous sequences using com-
mercially available 3′ and 5′ thiol modifiers.12 The 3′ thiolated
sequence was further modified with pyrene at its 5′ end as
previously described.8 Duplex DNA was prepared by combining
equimolar amounts of both thiolated strands with a complementary
24 mer strand. The DNA was hybridized by thermal annealing in
the presence of oxygen.13 The pyrene-modified duplexes were
subsequently self-assembled on a clean HOPG surface, and the
presence of thiols within the DNA monolayer was confirmed by
X-ray photoelectron spectroscopy (XPS).14

The electrochemistry of a well matched DNA monolayer
featuring a disulfide is illustrated in Figure 2 by square wave
voltammetry (SWV). Two signals centered at-160( 10 mV and
at -290 ( 10 mV versus the normal hydrogen electrode (NHE)
are observed. The first peak is electrochemically irreversible, and
the second peak is electrochemically reversible. Neither signal is
found for monolayers lacking the 3′ thiol (Figure 2).15 Furthermore,
a plot of peak current as a function of scan rate is linear for the
cathodic waves of the reversible signal, as expected for a surface
bound species.16

The reaction is mediated by the base pair stack, as evidenced by
the effect of base mismatches on the second, reversible peak. For
well matched DNA featuring a disulfide, the reversible electro-
chemical signal exhibits a peak current of 150( 30 nA (Figure
2). The incorporation of a CA mismatch below the thiols leads to

significant attenuation of the electrochemical signal with a resulting
peak current of 4( 7 nA. On the other hand, the incorporation of
a CA mismatch above the thiols has little effect on the signal with
a corresponding peak current of 124( 7 nA.

We can interrogate these redox signals by varying the solution
pH (Figure 3). Two proton coupled steps are observed electro-
chemically.17 The amplitude of the reversible signal remains nearly
constant as the pH is changed. The midpoint potential of this signal
shows a linear pH dependence with a slope of 44( 5 mV per pH
unit.18 However, the amplitude of the irreversible signal is
significantly affected by changes in pH. At acidic pH, the
irreversible cathodic wave is almost completely suppressed, while,
at basic pH, the irreversible cathodic wave is substantially enhanced.

A plausible reaction scheme accounts for these electrochemical
data. Although the reduction of a disulfide to two thiols often
proceeds through many intermediates, it is a net 2 e-, 2 H+

process.19 The addition of the first electron leads to a disulfide

Figure 1. Schematic illustration of charge transfer to thiols incorporated
into the DNA backbone.

Figure 2. SWV at 15 Hz (left) and schematic (right) for various DNA
monolayers. Top: Well-matched DNA featuring two thiols (black) and well-
matched DNA featuring one thiol (red). Bottom: DNA featuring a CA
mismatch above the disulfide (black) and DNA featuring a CA mismatch
below the disulfide (red). The 24 mer sequence utilized in the course of
these experiments was pyrene-(CH2)3-CONH-(CH2)6-NHCO-5′-ATG CAT
CGA C-S-S-CA CAG TGC TGT CGT-3′ plus unmodified complement.
The locations of the CA mismatches are in bold italics.
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radical anion, which we assign to the irreversible peak; at acidic
pH, this irreversible reduction is suppressed.19,20 The reversible
addition of two electrons to the disulfide results in disproportion-
ation with concomitant free thiol formation. Thus, the reversible
formation of free thiols may be a concerted 2 e-, 2 H+ process.

We have therefore shown that DNA-mediated electrochemistry
can promote reactions at a distance on the DNA sugar-phosphate
backbone. We had earlier seen that breaks in the backbone cause
little attenuation in DNA-mediated charge transport through the
base stack. We can reconcile these observations by noting relative
current densities for DNA-mediated disulfide reduction, 1.8µA/
cm2, versus well stacked intercalator reduction,∼80 µA/cm2 for
daunomycin.5 DNA-mediated reactions neighboring but not coupled
into the sugar-phosphate backbone are therefore less efficient.
Nonetheless, these results expand the reactions that can be achieved
through DNA-mediated charge transport chemistry. When one notes
that many DNA regulatory proteins utilize disulfide switches in
close proximity to the DNA backbone,21,22 these results may be
important to consider in a biological context.
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Figure 3. Cyclic voltammetry of well-matched DNA featuring a disulfide
in 5 mM Na+ Pi, 50 mM NaCl at a 50 mV/s scan rate. The black, blue, and
red traces represent pH 7.8, 6.6, and 4.7, respectively. The blue and red
traces have been offset for clarity.
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